Abstract convexity and generalizations of Himmelberg type fixed-point theorems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications

In this paper, we first establish a new fixed point theorem for a Meir-Keeler type condition. As an application, we derive a simultaneous generalization of Banach contraction principle, Kannan's fixed point theorem, Chatterjea's fixed point theorem and other fixed point theorems. Some new fixed point theorems are also obtained.

متن کامل

Edelstein Type Fixed Point Theorems

Recently, Suzuki [Nonlinear Anal. 71 (2009), no. 11, 5313–5317.] published a paper on which Edelstein’s fixed theorem was generalized. In this manuscript, we give some theorems which are the generalization of the fixed theorem of Suzuki’s Theorems and thus Edelstein’s result [J. London Math. Soc. 37 (1962), 74-79].

متن کامل

Some Generalizations of Fixed Point Theorems in Cone Metric Spaces

We generalize, extend, and improve some recent fixed point results in conemetric spaces including the results of H. Guang and Z. Xian 2007 ; P. Vetro 2007 ; M. Abbas and G. Jungck 2008 ; Sh. Rezapour and R. Hamlbarani 2008 . In all our results, the normality assumption, which is a characteristic of most of the previous results, is dispensed. Consequently, the results generalize several fixed re...

متن کامل

Generalizations of -Fixed Point Theorems in Partial Metric Spaces

We consider the dualistic partial metric spaces on a set X, and we give necessary conditions for existence of fixed point and −fixed point for some maps. AMS Subject Classification: 54H25; 54E50; 54E99; 68Q55

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2001

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(00)00291-1